Creation of stable molecular junctions with a custom-designed scanning tunneling microscope.

نویسندگان

  • Woochul Lee
  • Pramod Reddy
چکیده

The scanning tunneling microscope break junction (STMBJ) technique is a powerful approach for creating single-molecule junctions and studying electrical transport in them. However, junctions created using the STMBJ technique are usually mechanically stable for relatively short times (<1 s), impeding detailed studies of their charge transport characteristics. Here, we report a custom-designed scanning tunneling microscope that enables the creation of metal-single molecule-metal junctions that are mechanically stable for more than 1 minute at room temperature. This stability is achieved by a design that minimizes thermal drift as well as the effect of environmental perturbations. The utility of this instrument is demonstrated by performing transition voltage spectroscopy-at the single-molecule level-on Au-hexanedithiol-Au, Au-octanedithiol-Au and Au-decanedithiol-Au junctions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncovering a law of corresponding states for electron tunneling in molecular junctions.

Laws of corresponding states known so far demonstrate that certain macroscopic systems can be described in a universal manner in terms of reduced quantities, which eliminate specific substance properties. To quantitatively describe real systems, all these laws of corresponding states contain numerical factors adjusted empirically. Here, we report a law of corresponding states deduced analytical...

متن کامل

Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope.

The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electro...

متن کامل

Self-assembled monolayers on Pt(111): molecular packing structure and strain effects observed by scanning tunneling microscopy.

Self-assembled monolayers (SAMs) of octanethiol and benzeneethanethiol were deposited on clean Pt(111) surfaces in ultrahigh vacuum (UHV). Highly resolved images of these SAMs produced by an in situ scanning tunneling microscope (STM) showed that both systems organize into a super-structure mosaic of domains of locally ordered, closely packed molecules. Analysis of the STM images indicated a (s...

متن کامل

Resonant electron heating and molecular phonon cooling in single C60 junctions.

We study heating and heat dissipation of a single C(60) molecule in the junction of a scanning tunneling microscope by measuring the electron current required to thermally decompose the fullerene cage. The power for decomposition varies with electron energy and reflects the molecular resonance structure. When the scanning tunneling microscope tip contacts the fullerene the molecule can sustain ...

متن کامل

Electrochemical scanning tunneling spectroscopy of redox-active molecules bound by Au-C bonds.

A comparison of the electrochemical gating of molecular conduction by a redox [Os(bipyridine)(pyridine)Cl] complex tethered to Au(111) with two different metal-molecule junctions in a scanning tunneling microscope nanogap is presented. The same redox molecular structure was tethered by mercaptobenzoic acid or reduction of the aryldiazonium salt of p-aminobenzoic acid, resulting in a Au-S or Au-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 22 48  شماره 

صفحات  -

تاریخ انتشار 2011